

Panama City, Panama
Day 2
October 28th, 2020

Problem 4

Consider a triangle $A B C$ with $B C>A C$. The circle with center C and radius $A C$ intersects the segment $B C$ in D. Let I be the incenter of triangle $A B C$ and Γ be the circle that passes through I and is tangent to the line $C A$ at A. The line $A B$ and Γ intersect at a point F with $F \neq A$. Prove that $B F=B D$.

Problem 5

Let $P(x)$ be a polynomial with real non-negative coefficients. Let k be a positive integer and $x_{1}, x_{2}, \ldots, x_{k}$ positive real numbers such that $x_{1} x_{2} \cdots x_{k}=1$. Prove that

$$
P\left(x_{1}\right)+P\left(x_{2}\right)+\cdots+P\left(x_{k}\right) \geq k P(1)
$$

Problem 6

A positive integer N is said to be interoceanic if its prime factorization

$$
N=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}
$$

satisfies that

$$
x_{1}+x_{2}+\cdots+x_{k}=p_{1}+p_{2}+\cdots+p_{k} .
$$

Find all interoceanic numbers less than 2020.

